版元ドットコム

探せる、使える、本の情報

文芸 新書 社会一般 資格・試験 ビジネス スポーツ・健康 趣味・実用 ゲーム 芸能・タレント テレビ・映画化 芸術 哲学・宗教 歴史・地理 社会科学 教育 自然科学 医学 工業・工学 コンピュータ 語学・辞事典 学参 児童図書 ヤングアダルト 全集 文庫 コミック文庫 コミックス(欠番扱) コミックス(雑誌扱) コミックス(書籍) コミックス(廉価版) ムック 雑誌 増刊 別冊 ラノベ
Google Cloud Platform 実践 機械学習基盤 開発 Machine Learning / データ分析 株式会社トップゲート(著/文) - 秀和システム
..
詳細画像 0

Google Cloud Platform 実践 機械学習基盤 開発 Machine Learning / データ分析

B5変型判
216ページ
定価 2,800円+税
ISBN
9784798059570
Cコード
C3055
専門 単行本 電子通信
出版社在庫情報
不明
書店発売日
登録日
2020年1月21日
最終更新日
2020年1月21日
このエントリーをはてなブックマークに追加

紹介

GCPサービスのコンセプトや考え方を
実践的な使用例で完全理解!!

 ・機械学習のデータ処理や学習や推論をスケーラブルにできる
 ・GCPがUIを統合しているためチームで作業できる
 ・たくさんあるGCPプロダクトの使い分け・活用例を知ることができる
--
『機械学習、TnsorFlow 2.0、ETL、Apache Beam、Cloud Dataflow、BigQuery、BigQuery ML、MLOps、AutoML Tables を知る』

【この本の解説している内容】
 ・GCP上でスケーラブルな機械学習環境を構築するための各サービスの解説
 ・GCPに特化した、GCPの機械学習サービスのコンセプトや考え方を理解できる
 ・機械学習に不可欠なGCPによる、DWH構築の実践例がわかる
 ・GCPで機械学習システムを作る時のGCPサービスの活かし方

目次

序章
 環境の準備
 準備
 Google Cloud SDKについて
 Windowsへのインストール
 Macへのインストール
 Cloud SDKの使い方
 Cloud Shell

Chapter 1 専門知識不要で使えるサービス
1.1 AutoML
 1.1.1 AutoMLとは
 1.1.2 AutoML Tablesとは
 1.1.3 AutoML Tablesの位置づけ
 1.1.4 Cloud AutoML Tablesのモデルを構築する流れ
 1.1.5 本書のサンプルで必要な環境
 1.1.6 AutoML Tablesを使って予測
 1.1.7 番外編 ? 前処理+AutoML ?
1.2 BigQuery ML
 1.2.1 BigQuery MLとは
 1.2.2 BigQuery MLの特徴
 1.2.3 BigQueryでできること
 1.2.4 BigQuery ML、AutoML、Tensorflowの位置づけ
 1.2.5 Biqueryの操作方法
 1.2.6 BigQuery MLでモデルを構築する流れ
 1.2.7 BigQuery MLを使って予測

Chapter 2 TensorFlow
2.1 TensorFlowとは
2.2 TensorFlowと計算グラフ
 2.2.1 計算グラフとは
2.3 TensorFlow v2における変更
 2.3.1 Eager Execution
 2.3.2 AutoGraph
2.4 TensorFlowの高レベルAPI
 2.4.1 TensorFlowとKerasの歴史
 2.4.2 tf.kerasの使用例
 2.4.3 途中経過の保存
 2.4.4 学習の途中再開
2.5 まとめ

Chapter 3 計算リソースとしてのGCP
3.1 Googleの計算リソースに対する考え方
3.2 Google Compute Engine
 3.2.1 インスタンスの作成画面
 3.2.2 課金について
 3.2.3 等価なgcloudコマンドの生成
 3.2.4 gcloudコマンドによるインスタンスの作成
 3.2.5 使い終わったインスタンスを削除する
3.3 一連の処理の自動化
 3.3.1 Startupスクリプト
 3.3.2 Container-Optimized OS
3.4 AI Platform
 3.4.1 AI Platformの使用例
 3.4.2 AI Platformのその他の機能
3.5 Preemptible VMの活用
 3.5.1 Preemptible VM
 3.5.2 Preemptible VMを自動で再起動する方法
 3.5.3 TensorFlowで学習を途中から再開させる方法
 3.5.4 学習後にインスタンスを落とす方法
 3.5.5 最終的な構成とコードの例
3.6 後片付け
3.7 まとめ

Chapter 4 データの処理
4.1 データストレージ
 4.1.1 Cloud Storage
 4.1.2 BigQuery (Storage)
4.2 データ処理パイプライン
4.3 BigQueryによるデータ処理
 4.3.1 BigQueryによるデータ繋ぎ込み
 4.3.2 BigQueryによるデータ加工・特徴量生成
 4.3.3 Window関数
 4.3.4 BigQueryでの構造化データの扱い方
 4.3.5 配列の値の処理
 4.3.6 配列の作り方
 4.3.7 構造体
4.4  Cloud Dataflowによるデータ処理
 4.4.1 Apache Beamについて
 4.4.2 Apache Beamプログラミングモデル(Batch基本編)
 4.4.3 Apache Beamプログラミングモデル(Streaming編)
 4.4.4 Cloud Dataflow Template
 4.4.5 Dataflowによるデータ繋ぎ込み
 4.4.6 Dataflowによる機械学習の予測処理

Chapter 5 プロダクションのための機械学習
5.1 再現性
 5.1.1 Dockerで環境を固定する
 5.1.2 シード値を固定する
5.2 汎化性能
 5.2.1 前処理
 5.2.2 交差検証(CV)
 5.2.3 DataAugumentation(DA)
5.3 チームでモデル改善
 5.3.1 実験の成果物に誰でもアクセスできるようにする
 5.3.2 チームで実験を共有する
5.4 MLOps
 5.4.1 バージョン管理と精度の監視
 5.4.2 大規模タスクの実行

著者プロフィール

株式会社トップゲート  (カブシキガイシャ トップゲート)  (著/文

2006年7月、代表取締役・加藤昌樹一名にて、ITアーキテクトのコンサルティング会社として設立
2009年7月、Google App Engine / Java にてシステム開発を開始
2013年2月、Google Cloud Platform (GCP)のサービスパートナー締結
2014年9月、日本国内のサードベンダーで初めて GCP 認定トレーニングパートナー認定
2017年8月、Google Cloud Platform のプレミアサービスパートナーの認定を取得

藤原 秀平  (フジワラ シュウヘイ)  (著/文

大学院では数理最適化や機械学習の研究に取り組み修士号を取得。その後は開発者として Google Cloud Platform や機械学習関連の業務に従事。業務外でも TensorFlow User Group Tokyo のオーガナイザや Google Developers Expertとして活動している。

永井 洋一  (ナガイ ヨウイチ)  (著/文

2007年にメーカー系SI企業に入社。社内検索システムや社内データ分析基盤の開発などに従事するかたわら、趣味でWebサービス開発をしていたところAppEngineと出会う。その後GCPを使った開発を仕事としてやりたくなりトップゲートに入社。現在はメルペイでデータエンジニアとしてデータパイプラインを量産している。趣味でもGCPを使った機械学習システムの個人開発を進めている。お気に入りのGCPプ
ロダクトはBigQuery、Dataflow、AutoML Tables

森 和之  (モリ カズユキ)  (著/文

2007年に最初の新卒としてmixiに入社。mixiアプリやmixiプラットフォームをプロジェクト立ち上げから携わった。その後トップゲートに入社。フルスタック+機械学習エンジニアとして幅広く開発する。写真データや衛星データや金融時系列データのモデル作成などを手掛ける。ユーザーが一番近いところから世界の見方がわかるプロダクトの開発を目指す。

上記内容は本書刊行時のものです。